Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Kamalesh K. Sirkar
Documents disponibles écrits par cet auteur
Affiner la rechercheMembranes, phase interfaces, and separations / Kamalesh K. Sirkar in Industrial & engineering chemistry research, Vol. 47 n°15 (Août 2008)
[article]
in Industrial & engineering chemistry research > Vol. 47 n°15 (Août 2008) . - p. 5250–5266
Titre : Membranes, phase interfaces, and separations : novel techniques and membranes: an overview Type de document : texte imprimé Auteurs : Kamalesh K. Sirkar, Auteur Année de publication : 2008 Article en page(s) : p. 5250–5266 Note générale : Bibliogr. p. 5264-5266 Langues : Anglais (eng) Mots-clés : Membranes; Bulk phase interface Résumé : Membranes and bulk phase interfaces share a close relation in separations. The bulk phase interface may be a fluid−fluid, fluid−solid, or solid−solid interface; it may be immobilized or mobile. In conventional membrane separations, two-phase interfaces exist on two sides of the membrane, two solid−fluid interfaces for solid membranes. Conventional equilibrium separations, however, have only one bulk phase interface. Such an interface in gas−liquid, vapor−liquid, liquid−liquid, and subcritical/supercritical fluid−liquid separation systems may be created by phase-interface immobilization at a membrane pore mouth as in membrane contactor-based nondispersive equilibrium separations. Membrane emulsification/sparging/degassing leads to dispersion-based creation of mobile phase interfaces and phase contacting. Convective transport through membrane pores provides efficient solid−liquid contacting as in membrane chromatography. Antisolvent crystallization via dispersion/mixing through membrane pores creates new mobile solid−liquid interfaces. Solid−solid phase interfaces developed via a minor phase consisting of inorganic flakes, inactive fillers, active fillers, or a second polymer phase facilitate the development of a variety of polymeric membranes, porous as well as nonporous. By having two fluid−fluid phase interfaces immobilized on two sides of a porous membrane, liquid membranes and gas membranes have been developed successfully. A composite membrane having a nonporous/nanoporous coating can lead to two fluid−solid phase interfaces or three fluid−fluid phase interfaces for novel separations. The presence of two or more contiguous porous/nonporous membranes in one separation device leads to the existence of multiple bulk phase interfaces or membrane−fluid phase interfaces creating novel liquid membrane structures and separation capabilities in addition to internal staging for separation. The critical role played by the interaction of phase interfaces and membranes vis-à-vis many new separation techniques and membranes developed, commercialized, or being developed will be illustrated. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie8001952 [article] Membranes, phase interfaces, and separations : novel techniques and membranes: an overview [texte imprimé] / Kamalesh K. Sirkar, Auteur . - 2008 . - p. 5250–5266.
Bibliogr. p. 5264-5266
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 47 n°15 (Août 2008) . - p. 5250–5266
Mots-clés : Membranes; Bulk phase interface Résumé : Membranes and bulk phase interfaces share a close relation in separations. The bulk phase interface may be a fluid−fluid, fluid−solid, or solid−solid interface; it may be immobilized or mobile. In conventional membrane separations, two-phase interfaces exist on two sides of the membrane, two solid−fluid interfaces for solid membranes. Conventional equilibrium separations, however, have only one bulk phase interface. Such an interface in gas−liquid, vapor−liquid, liquid−liquid, and subcritical/supercritical fluid−liquid separation systems may be created by phase-interface immobilization at a membrane pore mouth as in membrane contactor-based nondispersive equilibrium separations. Membrane emulsification/sparging/degassing leads to dispersion-based creation of mobile phase interfaces and phase contacting. Convective transport through membrane pores provides efficient solid−liquid contacting as in membrane chromatography. Antisolvent crystallization via dispersion/mixing through membrane pores creates new mobile solid−liquid interfaces. Solid−solid phase interfaces developed via a minor phase consisting of inorganic flakes, inactive fillers, active fillers, or a second polymer phase facilitate the development of a variety of polymeric membranes, porous as well as nonporous. By having two fluid−fluid phase interfaces immobilized on two sides of a porous membrane, liquid membranes and gas membranes have been developed successfully. A composite membrane having a nonporous/nanoporous coating can lead to two fluid−solid phase interfaces or three fluid−fluid phase interfaces for novel separations. The presence of two or more contiguous porous/nonporous membranes in one separation device leads to the existence of multiple bulk phase interfaces or membrane−fluid phase interfaces creating novel liquid membrane structures and separation capabilities in addition to internal staging for separation. The critical role played by the interaction of phase interfaces and membranes vis-à-vis many new separation techniques and membranes developed, commercialized, or being developed will be illustrated. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie8001952