Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Weicheng Cao
Documents disponibles écrits par cet auteur
Affiner la rechercheNumerical simulation of multiphase flow and collision humidification in the multifluid alkaline spray generator for a novel semidry flue gas desulfurization system / Yuegui Zhou in Industrial & engineering chemistry research, Vol. 47 n°14 (Juillet 2008)
[article]
in Industrial & engineering chemistry research > Vol. 47 n°14 (Juillet 2008) . - p. 4861–4869
Titre : Numerical simulation of multiphase flow and collision humidification in the multifluid alkaline spray generator for a novel semidry flue gas desulfurization system Type de document : texte imprimé Auteurs : Yuegui Zhou, Auteur ; Weicheng Cao, Auteur ; Lei Wang, Auteur ; Mingchuan Zhang, Auteur Année de publication : 2008 Article en page(s) : p. 4861–4869 Langues : Anglais (eng) Mots-clés : Multifluid alkaline spray generator; Multiphase flow; Desulfurization system Résumé : A hybrid Eulerian−Lagrangian model was developed to simulate gas−droplet−particle multiphase flow and the collision humidification between sorbent particles and spray droplets in the confined multifluid alkaline spray generator for a novel semidry flue gas desulfurization system. In this model, the motions of discrete phases were tracked simultaneously by using a stochastic trajectory approach, and a probability model of droplets catching particles was presented to judge whether sorbent particles were caught with direct simulation Monte Carlo method. Numerical humidification efficiency of sorbent particles is validated by the experimental one deduced from the measured desulfurization efficiency. And the effects of flue gas flow rate, spray droplet diameter, sorbent particle diameter, and particle injection location on the humidification efficiency were optimized. Numerical results show that the collision humidification efficiency of sorbent particles increases significantly at the axial distance of 1.67 times the generator diameter from the nozzle tip and reaches 78.5% without recirculation flow in the alkaline spray generator when the ratio of flue gas mass flow rate to spray water mass flow rate is 6.7. Moreover, there is an optimal droplet diameter ranging from 125 to 150 µm and an optimal particle injection location corresponding to the maximum humidification efficiency in this paper. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie071494c [article] Numerical simulation of multiphase flow and collision humidification in the multifluid alkaline spray generator for a novel semidry flue gas desulfurization system [texte imprimé] / Yuegui Zhou, Auteur ; Weicheng Cao, Auteur ; Lei Wang, Auteur ; Mingchuan Zhang, Auteur . - 2008 . - p. 4861–4869.
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 47 n°14 (Juillet 2008) . - p. 4861–4869
Mots-clés : Multifluid alkaline spray generator; Multiphase flow; Desulfurization system Résumé : A hybrid Eulerian−Lagrangian model was developed to simulate gas−droplet−particle multiphase flow and the collision humidification between sorbent particles and spray droplets in the confined multifluid alkaline spray generator for a novel semidry flue gas desulfurization system. In this model, the motions of discrete phases were tracked simultaneously by using a stochastic trajectory approach, and a probability model of droplets catching particles was presented to judge whether sorbent particles were caught with direct simulation Monte Carlo method. Numerical humidification efficiency of sorbent particles is validated by the experimental one deduced from the measured desulfurization efficiency. And the effects of flue gas flow rate, spray droplet diameter, sorbent particle diameter, and particle injection location on the humidification efficiency were optimized. Numerical results show that the collision humidification efficiency of sorbent particles increases significantly at the axial distance of 1.67 times the generator diameter from the nozzle tip and reaches 78.5% without recirculation flow in the alkaline spray generator when the ratio of flue gas mass flow rate to spray water mass flow rate is 6.7. Moreover, there is an optimal droplet diameter ranging from 125 to 150 µm and an optimal particle injection location corresponding to the maximum humidification efficiency in this paper. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie071494c