Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Abdelhamid Bouhelal
Documents disponibles écrits par cet auteur
Affiner la rechercheAn artificial intelligence approach to enhance blade element momentum theory performance for horizontal axis wind turbine application / Ahmed Ladjal
Titre : An artificial intelligence approach to enhance blade element momentum theory performance for horizontal axis wind turbine application Type de document : document électronique Auteurs : Ahmed Ladjal, Auteur ; Abdelhamid Bouhelal, Directeur de thèse ; Smaili, Arezki, Directeur de thèse Editeur : [S.l.] : [s.n.] Année de publication : 2020 Importance : 1 fichier PDF (3.1 M) Présentation : ill. Note générale : Mode d'accès : accès au texte intégral par intranet.
Mémoire de Projet de Fin d’Études : Génie Mécanique : Alger, École Nationale Polytechnique : 2020
Bibliogr. f. 84 - 87Langues : Anglais (eng) Mots-clés : Horizontal axis wind turbines (HAWT) ; BEMtheory ; Artificial neural networks (ANNs) ; Angle of attack (AOA) ; Neurons number Index. décimale : PM02220 Résumé : So far, the Blade Element Momentum (BEM) theory remains the most widely used method for predicting aerodynamic performance of horizontal axis wind turbines (HAWTs) owing to its simplicity. The BEM theory is mainly based on airfoils data for wide range of conditions (airfoil shape, angles of attack (AOAs)). These data are usually collected in wind tunnel experiments for stationary airfoils at low AOAs. However, a rotating wind turbine, has higher AOAs. The motivation behind this work is to improve the classical BEM method by determining the airfoil performance coefficients where little or no experimental data exists such as at high AOAs, new airfoils shape and for low Reynolds numbers. For this purpose, an artificial intelligence approach, namely Artificial Neural Networks (ANNs) is proposed for predicting the airfoils lift and drag coefficients. Firstly, the optimum number of layers as well as the optimum neurons number for training input-output data have beenselected numerically. Afterwards, the results of the proposed BEM-ANN method have beencompared with available experimental results in order to investigate its validity.Good agreementswereobtainedbetween numerical predictions and experimental results. An artificial intelligence approach to enhance blade element momentum theory performance for horizontal axis wind turbine application [document électronique] / Ahmed Ladjal, Auteur ; Abdelhamid Bouhelal, Directeur de thèse ; Smaili, Arezki, Directeur de thèse . - [S.l.] : [s.n.], 2020 . - 1 fichier PDF (3.1 M) : ill.
Mode d'accès : accès au texte intégral par intranet.
Mémoire de Projet de Fin d’Études : Génie Mécanique : Alger, École Nationale Polytechnique : 2020
Bibliogr. f. 84 - 87
Langues : Anglais (eng)
Mots-clés : Horizontal axis wind turbines (HAWT) ; BEMtheory ; Artificial neural networks (ANNs) ; Angle of attack (AOA) ; Neurons number Index. décimale : PM02220 Résumé : So far, the Blade Element Momentum (BEM) theory remains the most widely used method for predicting aerodynamic performance of horizontal axis wind turbines (HAWTs) owing to its simplicity. The BEM theory is mainly based on airfoils data for wide range of conditions (airfoil shape, angles of attack (AOAs)). These data are usually collected in wind tunnel experiments for stationary airfoils at low AOAs. However, a rotating wind turbine, has higher AOAs. The motivation behind this work is to improve the classical BEM method by determining the airfoil performance coefficients where little or no experimental data exists such as at high AOAs, new airfoils shape and for low Reynolds numbers. For this purpose, an artificial intelligence approach, namely Artificial Neural Networks (ANNs) is proposed for predicting the airfoils lift and drag coefficients. Firstly, the optimum number of layers as well as the optimum neurons number for training input-output data have beenselected numerically. Afterwards, the results of the proposed BEM-ANN method have beencompared with available experimental results in order to investigate its validity.Good agreementswereobtainedbetween numerical predictions and experimental results. Exemplaires
Code-barres Cote Support Localisation Section Disponibilité Spécialité Etat_Exemplaire EP00252 PM02220 Ressources électroniques Bibliothèque centrale Projet Fin d'Etudes Disponible Genie_mecanique Téléchargeable Documents numériques
LADJAL.Ahmed.pdfURL Contribution to the aerodynamic study of the air- sand flow around a wind turbine blade / Abdelhamid Bouhelal
Titre : Contribution to the aerodynamic study of the air- sand flow around a wind turbine blade Type de document : texte imprimé Auteurs : Abdelhamid Bouhelal, Auteur ; Smaili, Arezki, Directeur de thèse ; Ouahiba Guerri, Directeur de thèse ; Christian Masson, Directeur de thèse Editeur : [S.l.] : [s.n.] Année de publication : 2018 Importance : 152 f. Présentation : ill. Format : 30 cm. Accompagnement : 1 CD-ROM. Note générale : Thèse de Doctorat : Génie Mécanique : Alger, École Nationale Polytechnique : 2018
Bibliogr. f. 129 - 146 . Annexe f. 147 - 152Langues : Anglais (eng) Mots-clés : Wind energy ; Aerodynamic analysis ; Numerical simulation ; Turbulence models ; Eulerian-Lagrangian approach ; Sand effect Index. décimale : D003618 Résumé : The subject of this thesis deals with the numerical simulation of turbulent flow around a horizontal axis wind turbine (HAWT) blade installed in Saharan climate. To do this, a 3D CFD method was developed based on the resolution of the Reynolds averaged Navier-Stokes equations (RANS). This thesis work focuses on two parts. The first part is to study the ability of different RANS turbulence models to predict the aerodynamic performances and the velocity in the wake of HAWTs.
The second part is to investigate the sand effects on the aerodynamic performance of wind turbines installed in a desert environment based on an Eulerian-Lagrangian approach. The results of the simulation showed that the choice of the turbulence model has a significant effect on the accuracy of numerical predictions, especially for high wind speeds. It was also noted that the presence of sand particles could significantly reduce the aerodynamic performance.Contribution to the aerodynamic study of the air- sand flow around a wind turbine blade [texte imprimé] / Abdelhamid Bouhelal, Auteur ; Smaili, Arezki, Directeur de thèse ; Ouahiba Guerri, Directeur de thèse ; Christian Masson, Directeur de thèse . - [S.l.] : [s.n.], 2018 . - 152 f. : ill. ; 30 cm. + 1 CD-ROM.
Thèse de Doctorat : Génie Mécanique : Alger, École Nationale Polytechnique : 2018
Bibliogr. f. 129 - 146 . Annexe f. 147 - 152
Langues : Anglais (eng)
Mots-clés : Wind energy ; Aerodynamic analysis ; Numerical simulation ; Turbulence models ; Eulerian-Lagrangian approach ; Sand effect Index. décimale : D003618 Résumé : The subject of this thesis deals with the numerical simulation of turbulent flow around a horizontal axis wind turbine (HAWT) blade installed in Saharan climate. To do this, a 3D CFD method was developed based on the resolution of the Reynolds averaged Navier-Stokes equations (RANS). This thesis work focuses on two parts. The first part is to study the ability of different RANS turbulence models to predict the aerodynamic performances and the velocity in the wake of HAWTs.
The second part is to investigate the sand effects on the aerodynamic performance of wind turbines installed in a desert environment based on an Eulerian-Lagrangian approach. The results of the simulation showed that the choice of the turbulence model has a significant effect on the accuracy of numerical predictions, especially for high wind speeds. It was also noted that the presence of sand particles could significantly reduce the aerodynamic performance.Exemplaires
Code-barres Cote Support Localisation Section Disponibilité Spécialité Etat_Exemplaire T000160 D003618 Papier Bibliothèque Annexe Thèse de Doctorat Disponible Genie_mecanique Consultation sur place T000159 D003618 Papier Bibliothèque centrale Thèse de Doctorat Disponible Genie_mecanique Consultation sur place Documents numériques
BOUHELAL.Abdelhamid.pdfURL