| 
					| Titre : | Deep neural networks optimization for embedded platforms |  
					| Type de document : | document électronique |  
					| Auteurs : | Anouar Laouichi, Auteur ; Abderrahim Benaouda, Auteur ; Sid-Ahmed Berrani, Directeur de thèse ; Hamza Yous, Directeur de thèse |  
					| Editeur : | [S.l.] : [s.n.] |  
					| Année de publication : | 2020 |  
					| Importance : | 1 fichier PDF (6.1 M) |  
					| Présentation : | ill. |  
					| Note générale : | Mode d'accès : accès au texte intégral par intranet. Mémoire de Projet de Fin d’Études : Électronique : Alger, École Nationale Polytechnique : 2020
 Bibliogr. f. 85 - 92
 |  
					| Langues : | Anglais (eng) |  
					| Mots-clés : | Artificial intelligence Deep Neural
 Embedded Systems
 Inference
 Networks
 Pruning
 Quantization
 Object detection
 Pytorch
 |  
					| Index. décimale : | PN00820 |  
					| Résumé : | This  project  deals  with  the  optimization  of  Deep  Neural  Networks  for  efficientembedded  inference.   Network  Pruning and Quantization techniques are implemented underthe  PyTorch environment and benchmarked on ResNet50. The  obtained results, consisting ofcompression and speed-up rates, successfully validate the feasibility and the effectiveness of theconcept. To show their practical potential, the  two  schemes have been applied on  RetinaNetobject detector. Additionally, this work demonstrates that inference can be  performed at theedge by reducing the model’s memory footprint and the processing time, resulting in reducedlatency and energy  consumption as well as improved data security. Hence, new horizons ofapplications in embedded systems are opened up | 
Deep neural networks optimization for embedded platforms [document électronique] / Anouar Laouichi , Auteur ; Abderrahim Benaouda , Auteur ; Sid-Ahmed Berrani , Directeur de thèse ; Hamza Yous , Directeur de thèse . - [S.l.] : [s.n.] , 2020 . - 1 fichier PDF (6.1 M) : ill. Mode d'accès : accès au texte intégral par intranet. 
Mémoire de Projet de Fin d’Études : Électronique : Alger, École Nationale Polytechnique : 2020 
Bibliogr. f. 85 - 92Langues  : Anglais (eng ) 
					| Mots-clés : | Artificial intelligence Deep Neural
 Embedded Systems
 Inference
 Networks
 Pruning
 Quantization
 Object detection
 Pytorch
 |  
					| Index. décimale : | PN00820 |  
					| Résumé : | This  project  deals  with  the  optimization  of  Deep  Neural  Networks  for  efficientembedded  inference.   Network  Pruning and Quantization techniques are implemented underthe  PyTorch environment and benchmarked on ResNet50. The  obtained results, consisting ofcompression and speed-up rates, successfully validate the feasibility and the effectiveness of theconcept. To show their practical potential, the  two  schemes have been applied on  RetinaNetobject detector. Additionally, this work demonstrates that inference can be  performed at theedge by reducing the model’s memory footprint and the processing time, resulting in reducedlatency and energy  consumption as well as improved data security. Hence, new horizons ofapplications in embedded systems are opened up | 
 |