Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Ahmed Ladjal
Documents disponibles écrits par cet auteur
Affiner la rechercheAn artificial intelligence approach to enhance blade element momentum theory performance for horizontal axis wind turbine application / Ahmed Ladjal
Titre : An artificial intelligence approach to enhance blade element momentum theory performance for horizontal axis wind turbine application Type de document : document électronique Auteurs : Ahmed Ladjal, Auteur ; Abdelhamid Bouhelal, Directeur de thèse ; Smaili, Arezki, Directeur de thèse Editeur : [S.l.] : [s.n.] Année de publication : 2020 Importance : 1 fichier PDF (3.1 M) Présentation : ill. Note générale : Mode d'accès : accès au texte intégral par intranet.
Mémoire de Projet de Fin d’Études : Génie Mécanique : Alger, École Nationale Polytechnique : 2020
Bibliogr. f. 84 - 87Langues : Anglais (eng) Mots-clés : Horizontal axis wind turbines (HAWT) ; BEMtheory ; Artificial neural networks (ANNs) ; Angle of attack (AOA) ; Neurons number Index. décimale : PM02220 Résumé : So far, the Blade Element Momentum (BEM) theory remains the most widely used method for predicting aerodynamic performance of horizontal axis wind turbines (HAWTs) owing to its simplicity. The BEM theory is mainly based on airfoils data for wide range of conditions (airfoil shape, angles of attack (AOAs)). These data are usually collected in wind tunnel experiments for stationary airfoils at low AOAs. However, a rotating wind turbine, has higher AOAs. The motivation behind this work is to improve the classical BEM method by determining the airfoil performance coefficients where little or no experimental data exists such as at high AOAs, new airfoils shape and for low Reynolds numbers. For this purpose, an artificial intelligence approach, namely Artificial Neural Networks (ANNs) is proposed for predicting the airfoils lift and drag coefficients. Firstly, the optimum number of layers as well as the optimum neurons number for training input-output data have beenselected numerically. Afterwards, the results of the proposed BEM-ANN method have beencompared with available experimental results in order to investigate its validity.Good agreementswereobtainedbetween numerical predictions and experimental results. An artificial intelligence approach to enhance blade element momentum theory performance for horizontal axis wind turbine application [document électronique] / Ahmed Ladjal, Auteur ; Abdelhamid Bouhelal, Directeur de thèse ; Smaili, Arezki, Directeur de thèse . - [S.l.] : [s.n.], 2020 . - 1 fichier PDF (3.1 M) : ill.
Mode d'accès : accès au texte intégral par intranet.
Mémoire de Projet de Fin d’Études : Génie Mécanique : Alger, École Nationale Polytechnique : 2020
Bibliogr. f. 84 - 87
Langues : Anglais (eng)
Mots-clés : Horizontal axis wind turbines (HAWT) ; BEMtheory ; Artificial neural networks (ANNs) ; Angle of attack (AOA) ; Neurons number Index. décimale : PM02220 Résumé : So far, the Blade Element Momentum (BEM) theory remains the most widely used method for predicting aerodynamic performance of horizontal axis wind turbines (HAWTs) owing to its simplicity. The BEM theory is mainly based on airfoils data for wide range of conditions (airfoil shape, angles of attack (AOAs)). These data are usually collected in wind tunnel experiments for stationary airfoils at low AOAs. However, a rotating wind turbine, has higher AOAs. The motivation behind this work is to improve the classical BEM method by determining the airfoil performance coefficients where little or no experimental data exists such as at high AOAs, new airfoils shape and for low Reynolds numbers. For this purpose, an artificial intelligence approach, namely Artificial Neural Networks (ANNs) is proposed for predicting the airfoils lift and drag coefficients. Firstly, the optimum number of layers as well as the optimum neurons number for training input-output data have beenselected numerically. Afterwards, the results of the proposed BEM-ANN method have beencompared with available experimental results in order to investigate its validity.Good agreementswereobtainedbetween numerical predictions and experimental results. Exemplaires
Code-barres Cote Support Localisation Section Disponibilité Spécialité Etat_Exemplaire EP00252 PM02220 Ressources électroniques Bibliothèque centrale Projet Fin d'Etudes Disponible Genie_mecanique Téléchargeable Documents numériques
LADJAL.Ahmed.pdfURL