Détail de l'auteur
Auteur Islem Kobbi |
Documents disponibles écrits par cet auteur (1)



Reinforcement and deep learning-based optimization of pose estimation techniques in single and multi-agent systems / Islem Kobbi (2023)
![]()
Titre : Reinforcement and deep learning-based optimization of pose estimation techniques in single and multi-agent systems : application to aerial and mobile robots Type de document : document électronique Auteurs : Islem Kobbi, Auteur ; Abdelhak Benamirouche, Auteur ; Mohamed Tadjine, Directeur de thèse Editeur : [S.l.] : [s.n.] Année de publication : 2023 Importance : 1 fichier PDF (18.8 Mo) Présentation : ill. Note générale : Mode d'accès : accès au texte intégral par intranet.
Mémoire de Projet de Fin d’Études : Automatique : Alger, École Nationale Polytechnique : 2023
Bibliogr. P. 143 - 145. - Annexes P. 146 - 150.Langues : Anglais (eng) Mots-clés : Deep Pose estimation
Multi-agent system
Reinforcement LearningIndex. décimale : PA01023 Résumé : In this work, we will focus on optimizing pose estimation techniques for aerial and mobile robots in both single-agent and multi-agent systems. Novel approaches based on Deep Learning and Reinforcement Learning will be proposed to enhance accuracy and robustness. The thesis includes a comprehensive literature review, introducing software tools used in the research. Two approaches for single agent pose estimation, will be presented : the QR estimator for an adaptive version of the Extended Kalman Filter and the KalmanNet approach for a direct estimation of the Filter gain. The effectiveness of these approaches will be demonstrated through simulations. The investigation will then be extended to collaborative pose estimation in multi-agent systems. A novel approach will be also proposed which aims to improve accuracy and robustness by leveraging information from neighboring agents. The findings will be validated in a real-world simulation environment using ROS and Gazebo. Reinforcement and deep learning-based optimization of pose estimation techniques in single and multi-agent systems : application to aerial and mobile robots [document électronique] / Islem Kobbi, Auteur ; Abdelhak Benamirouche, Auteur ; Mohamed Tadjine, Directeur de thèse . - [S.l.] : [s.n.], 2023 . - 1 fichier PDF (18.8 Mo) : ill.
Mode d'accès : accès au texte intégral par intranet.
Mémoire de Projet de Fin d’Études : Automatique : Alger, École Nationale Polytechnique : 2023
Bibliogr. P. 143 - 145. - Annexes P. 146 - 150.
Langues : Anglais (eng)
Mots-clés : Deep Pose estimation
Multi-agent system
Reinforcement LearningIndex. décimale : PA01023 Résumé : In this work, we will focus on optimizing pose estimation techniques for aerial and mobile robots in both single-agent and multi-agent systems. Novel approaches based on Deep Learning and Reinforcement Learning will be proposed to enhance accuracy and robustness. The thesis includes a comprehensive literature review, introducing software tools used in the research. Two approaches for single agent pose estimation, will be presented : the QR estimator for an adaptive version of the Extended Kalman Filter and the KalmanNet approach for a direct estimation of the Filter gain. The effectiveness of these approaches will be demonstrated through simulations. The investigation will then be extended to collaborative pose estimation in multi-agent systems. A novel approach will be also proposed which aims to improve accuracy and robustness by leveraging information from neighboring agents. The findings will be validated in a real-world simulation environment using ROS and Gazebo. Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité Spécialité Etat_Exemplaire EP00534 PA01023 Ressources électroniques Bibliothèque centrale Projet Fin d'Etudes Disponible Automatique Téléchargeable Documents numériques
![]()
BENAMIROUCHE.Abdelhak_KOBBI.Islem.pdfURL