Titre : |
Automation in cybersecurity : deep learning-based approaches for malware family identification |
Type de document : |
document électronique |
Auteurs : |
Chaimaa Abi, Auteur ; Sid-Ahmed Berrani, Directeur de thèse ; Abdelouahab Boudjellal, Directeur de thèse |
Editeur : |
[S.l.] : [s.n.] |
Année de publication : |
2023 |
Importance : |
1 fichier PDF (3.9 Mo) |
Présentation : |
ill. |
Note générale : |
Mode d'accès : accès au texte intégral par intranet
Mémoire de Projet de Fin d’Etudes : Génie Industriel. Data Science-Intelligence Artificielle : Alger, Ecole Nationale Polytechnique : 2023
Bibliogr. P. 65 - 68 |
Langues : |
Anglais (eng) |
Mots-clés : |
Deep learning
Feature extraction
Malware analysis
Malware classification
Malware visualization
Multimodal |
Index. décimale : |
PI02623 |
Résumé : |
The rapid proliferation of malware presents a significant threat to computer systems and data security. The ability to detect and accurately classify malware is crucial for mitigating cyber threats and preventing potential damages. However, traditional methods for malware classification and analysis have shown some limitations in keeping pace with the with the ever-changing landscape of malware. In this thesis, we propose a novel approach that harnesses the power of machine and deep learning techniques for efficient malware classification and offers real-time and automated data-driven solution, enabling proactive measures to efficiently prevent and mitigate cyber threats. |
Automation in cybersecurity : deep learning-based approaches for malware family identification [document électronique] / Chaimaa Abi, Auteur ; Sid-Ahmed Berrani, Directeur de thèse ; Abdelouahab Boudjellal, Directeur de thèse . - [S.l.] : [s.n.], 2023 . - 1 fichier PDF (3.9 Mo) : ill. Mode d'accès : accès au texte intégral par intranet
Mémoire de Projet de Fin d’Etudes : Génie Industriel. Data Science-Intelligence Artificielle : Alger, Ecole Nationale Polytechnique : 2023
Bibliogr. P. 65 - 68 Langues : Anglais ( eng)
Mots-clés : |
Deep learning
Feature extraction
Malware analysis
Malware classification
Malware visualization
Multimodal |
Index. décimale : |
PI02623 |
Résumé : |
The rapid proliferation of malware presents a significant threat to computer systems and data security. The ability to detect and accurately classify malware is crucial for mitigating cyber threats and preventing potential damages. However, traditional methods for malware classification and analysis have shown some limitations in keeping pace with the with the ever-changing landscape of malware. In this thesis, we propose a novel approach that harnesses the power of machine and deep learning techniques for efficient malware classification and offers real-time and automated data-driven solution, enabling proactive measures to efficiently prevent and mitigate cyber threats. |
|