Titre : |
Performance prediction of a reverse osmosis system using machine learning |
Type de document : |
document électronique |
Auteurs : |
Adem Britah, Auteur ; Haithem Abderrahmane Belala, Auteur ; Mohamed Tadjine, Directeur de thèse ; Messaoud Chakir, Directeur de thèse |
Editeur : |
[S.l.] : [s.n.] |
Année de publication : |
2024 |
Importance : |
1 fichier PDF (6 Mo) |
Présentation : |
ill. |
Note générale : |
Mode d'accès : accès au texte intégral par intranet.
Mémoire de Projet de Fin d’Études : Automatique : Alger, École Nationale Polytechnique : 2024
Bibliogr. p. 93 - 96 |
Langues : |
Français (fre) |
Mots-clés : |
Desalination
Reverse osmosis
Modeling
Membrane fouling
Fouling prediction
Machine learning
Long short-term memory
Transformer
Sliding mode observer |
Index. décimale : |
PA00824 |
Résumé : |
The reverse osmosis process holds great importance in the water treatment industry. Despite its common use, this process suffers from membrane fouling, which affects the quality of the produced water and the performance of the membrane itself. So far, the operation of reverse osmosis systems relies on the operators’ experience, with maintenance activities carried out according to predefined schedules or criteria. This work involves developing a sliding mode observer-based fouling estimation, and using various machine learning techniques to provide real-time predictions and maintenance recommendations. The results provide valuable insights into the performance and suitability of these estimation approaches. |
Performance prediction of a reverse osmosis system using machine learning [document électronique] / Adem Britah, Auteur ; Haithem Abderrahmane Belala, Auteur ; Mohamed Tadjine, Directeur de thèse ; Messaoud Chakir, Directeur de thèse . - [S.l.] : [s.n.], 2024 . - 1 fichier PDF (6 Mo) : ill. Mode d'accès : accès au texte intégral par intranet.
Mémoire de Projet de Fin d’Études : Automatique : Alger, École Nationale Polytechnique : 2024
Bibliogr. p. 93 - 96 Langues : Français ( fre)
Mots-clés : |
Desalination
Reverse osmosis
Modeling
Membrane fouling
Fouling prediction
Machine learning
Long short-term memory
Transformer
Sliding mode observer |
Index. décimale : |
PA00824 |
Résumé : |
The reverse osmosis process holds great importance in the water treatment industry. Despite its common use, this process suffers from membrane fouling, which affects the quality of the produced water and the performance of the membrane itself. So far, the operation of reverse osmosis systems relies on the operators’ experience, with maintenance activities carried out according to predefined schedules or criteria. This work involves developing a sliding mode observer-based fouling estimation, and using various machine learning techniques to provide real-time predictions and maintenance recommendations. The results provide valuable insights into the performance and suitability of these estimation approaches. |
|