[article]
Titre : |
Variational Principle in Fluid Dynamics |
Titre original : |
Principe Changement dans les Dynamiques de Fluide |
Type de document : |
texte imprimé |
Auteurs : |
Lemieux, Pierre F., Auteur ; Unny, Tharakkal E., Auteur |
Année de publication : |
2006 |
Article en page(s) : |
1031-1038 p. |
Note générale : |
Génie Mécanique |
Langues : |
Anglais (eng) |
Mots-clés : |
Dynamics Engineering mechanics Fluid flow Hydraulics Mathematics Dynamique Mécanique de technologie Flux fluide Hydraulique Mathématiques |
Index. décimale : |
621.34/624 |
Résumé : |
A variational principle is formulated for the flow of a viscous incompressible fluid taking into account the convective terms. The field of application of the variational principle is defined. A problem is solved for a time-dependent phenomenon when the fluid is a non-Newtonian pseudoplastic liquid obeying the power-law model due to its simplicity and to serve as an application of the variational principle.
Un principe variationnel est formulé pour l'écoulement d'un fluide incompressible visqueux tenant compte des limites convectrices. Le champ de l'application du principe variationnel est défini. Un problème est résolu pour un phénomène dépendant de temps quand le fluide est un liquide pseudoplastique non newtonien obéissant le modèle de loi de puissance dû à sa simplicité et du servir d'application du principe variationnel.
|
in Journal of engineering mechanics > Vol. 96 N°6 (Novembre/Decembre 1970) . - 1031-1038 p.
[article] Variational Principle in Fluid Dynamics = Principe Changement dans les Dynamiques de Fluide [texte imprimé] / Lemieux, Pierre F., Auteur ; Unny, Tharakkal E., Auteur . - 2006 . - 1031-1038 p. Génie Mécanique Langues : Anglais ( eng) in Journal of engineering mechanics > Vol. 96 N°6 (Novembre/Decembre 1970) . - 1031-1038 p.
Mots-clés : |
Dynamics Engineering mechanics Fluid flow Hydraulics Mathematics Dynamique Mécanique de technologie Flux fluide Hydraulique Mathématiques |
Index. décimale : |
621.34/624 |
Résumé : |
A variational principle is formulated for the flow of a viscous incompressible fluid taking into account the convective terms. The field of application of the variational principle is defined. A problem is solved for a time-dependent phenomenon when the fluid is a non-Newtonian pseudoplastic liquid obeying the power-law model due to its simplicity and to serve as an application of the variational principle.
Un principe variationnel est formulé pour l'écoulement d'un fluide incompressible visqueux tenant compte des limites convectrices. Le champ de l'application du principe variationnel est défini. Un problème est résolu pour un phénomène dépendant de temps quand le fluide est un liquide pseudoplastique non newtonien obéissant le modèle de loi de puissance dû à sa simplicité et du servir d'application du principe variationnel.
|
|