Autonomous vehicles and mixed traffic flows for the dissipation of stop-and-go waves in multi-lane ring roads / Tinhinane Mezair (2022)
Autonomous vehicles and mixed traffic flows for the dissipation of stop-and-go waves in multi-lane ring roads [document électronique] / Tinhinane Mezair, Auteur ; Abdelmadjid Tadjadit, Directeur de thèse ; Latifa Debbi, Directeur de thèse ; Amaury Hayat, Directeur de thèse ; Benedetto Piccoli, Directeur de thèse . - [S.l.] : [s.n.], 2022 . - 1 fichier PDF (3.88 MO).
Mode d'accès : accès au texte intégral par intranet.
Mémoire de Projet de Fin d’Études : Génie Civil : Alger, École Nationale Polytechnique : 2022.
Thèse en collaboration avec Ecole des Ponts Paris Tech, Rutgers University Camden et CIRCLES Consortium.
Bibliogr. f. 104-107
Langues : Anglais (eng)
Mots-clés : Autonomous cars
Mixed-traffic
Bando-FTL
Treiber
PΔ PIndex. décimale : PB00922 Résumé :
In this work, we use the Bando-FTL microscopic traffic model with the Treiber et al. lane changing mechanism to describe the movements of vehicles in a multi-lane ring road, and the PΔP model to quantify vehicular fuel consumption. We are interested in contributing to giving a better understanding of multi-lane road traffic systems. In a first part of the work, we prove that multi-lane traffic systems are very sensitive to lane changing parameters; and that it is possible to dissipate stop-and-go waves, in multi-lane traffic flows of aggressive cars, by introducing a single autonomous vehicle following a prescribed acceleration law in high congestion, and obtain a reduction in vehicular energy consumption of up to 75%. In a second part, we show that, in multi-lane traffic flows of collaborative and aggressive cars, in contrast with single-lane systems, a proportion of collaborative cars as low as 22% can be effective to smooth stop-and-go waves. Finally, in a third part, we study a multi-lane traffic system where coexist trucks (long heavy weight vehicles) with aggressive cars, and we show that a proportion of 29% of trucks can be efficient to dissipate stop-and-go waves.