Analyse complexe / Randé, Bernard in Techniques de l'ingénieur AFM, Vol. AFM1 (Trimestriel)
Analyse complexe : applications holomorphes [texte imprimé] / Randé, Bernard, Auteur . - 2007 . - 1-22 p.
Mathématiques pour l'ingénieur
Langues : Français (fre)
in Techniques de l'ingénieur AFM > Vol. AFM1 (Trimestriel) . - 1-22 p.
Mots-clés : Analyse--Complexe--Applicalions--Holomorphes Résumé : Les applications holomorphes permettent d’élucider certains phénomènes qui semblent ne mettre en cause, au premier abord, que des nombres réels, alors que ces applications sont définies sur un ouvert du plan complexe.
Un exemple frappant de cette situation est fourni par le calcul d’intégrales de fonctions de la variable réelle, rendu simple et surtout systématique, par l’utilisation de la formule des résidus.
Cette formule exprime, en termes calculatoires, la géométrie du plan complexe, qui diffère de celle de la droite réelle en ceci que, dans le premier cadre, il est possible d’entourer un point par un lacet (c’est-à-dire une courbe qui se referme sur elle-même). La notion d’intégrale le long d’un lacet permet alors de calculer une intégrale « autour » d’un pôle d’une application holomorphe f. Ce faisant, on fait apparaître deux termes :
le premier, de nature géométrique, est le nombre de tours que fait le lacet autour du pôle : c’est la notion d’indice ;
le second exprime le comportement de f au voisinage du pôle, qui fait intervenir un nombre, le résidu de f en ce pôle.
À l’aide de telles intégrales, on obtient une formule assez générale, dite formule des résidus. Convenablement appliquée à des lacets particuliers, elle permet d’obtenir la valeur de nombreuses intégrales d’applications définies sur , souvent restrictions de certaines applications holomorphes sur .
On peut aussi en déduire d’autres égalités, en appliquant la formule des résidus à des applications dépendant d’un paramètre complexe. Ces égalités donnent lieu à des identités entre fonctions complexes (du paramètre). Les développements eulériens sont de cette nature.
L’utilisation d’intégrales le long de certains chemins conduit aussi à la résolution d’équations différentielles. Ce sujet, en soi très vaste, n’est pas abordé dans l’article, pas plus que la recherche du comportement asymptotique d’intégrales dépendant d’un paramètre.Note de contenu : Errata. REFERENCE : AF113 ISSN : 1776-0860 Date : Avril 2000 En ligne : http://www.techniques-ingenieur.fr/base-documentaire/sciences-fondamentales-th8/ [...]