Algorithmes numériques pour la résolution des grandes systèmes / Spiteri, Pierre in Techniques de l'ingénieur AFM, Vol. AFM3 (Trimestriel)
Algorithmes numériques pour la résolution des grandes systèmes [texte imprimé] / Spiteri, Pierre, Auteur . - 2007 . - 1-10 p.
Mathématiques pour l'ingénieur
Langues : Français (fre)
in Techniques de l'ingénieur AFM > Vol. AFM3 (Trimestriel) . - 1-10 p.
Mots-clés : Algorithmes numériquesRésolution Grands systèmes Résumé : On a vu dans l’article Méthode des différences finies pour les EDP stationnairesMéthode des différences finies pour les EDP stationnaires que la discrétisation d’équations aux dérivées partielles stationnaires conduisait à la résolution de systèmes linéaires de grande dimension dont la matrice est creuse. De même, la discrétisation d’équations aux dérivées partielles d’évolution par des schémas implicites (article Méthode des différences finies pour les EDP d’évolutionMéthode des différences finies pour les EDP d’évolution) conduit également à la résolution de systèmes linéaires ayant les mêmes caractéristiques. Compte tenu de cette spécificité, l’inversion des matrices issues de la discrétisation d’équations aux dérivées partielles devient de plus en plus préoccupante dans le domaine de la simulation numérique et est, par conséquent, très délicate, compte tenu, en particulier, du mauvais conditionnement de ces matrices. Cet aspect dépend fortement des applications traitées et il est hors de question de donner une réponse universelle à ce problème. C’est pourquoi, dans cet article, nous allons passer en revue différentes méthodes de résolution de tels systèmes, pour essayer de dégager les algorithmes les plus performants.
Dans le cas de la résolution numérique d’une équation aux dérivées partielles non linéaire, on doit résoudre un système algébrique non linéaire ; la résolution d’un tel système s’effectuera par une méthode itérative de type méthode de Newton BARANGER (J.) - Analyse numérique., ce qui nécessitera, à chaque itération, une linéarisation de l’application considérée autour du point courant et la résolution d’un système linéaire ; l’étude de la convergence de ce type de méthode est loin d’être triviale et les résultats théoriques garantissant la convergence de la méthode sont établis uniquement dans des situations particulières. Si l’équation aux dérivées partielles est linéaire, on aura à résoudre un système linéaire ce qui, en théorie, paraît plus simple ; cependant il subsiste des difficultés d’ordre numérique pour déterminer la solution approchée. Dans cet exposé, nous nous limiterons au cas linéaireNote de contenu : Bibliogr. REFERENCE : AF 502 ISSN : 1776-0860 Date : Octobre 2002 En ligne : http://www.techniques-ingenieur.fr/base-documentaire/sciences-fondamentales-th8/ [...]